A Novel Non-orthogonal Joint Diagonalization Cost Function for ICA

نویسندگان

  • Bijan Afsari
  • P. S. Krishnaprasad
چکیده

We present a new scale-invariant cost function for non-orthogonal joint-diagonalization of a set of symmetric matrices with application to Independent Component Analysis (ICA). We derive two gradient minimization schemes to minimize this cost function. We also consider their performance in the context of an ICA algorithm based on non-orthogonal joint diagonalization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple LU and QR Based Non-orthogonal Matrix Joint Diagonalization

A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invar...

متن کامل

Some Gradient Based Joint Diagonalization Methods for ICA

We present a set of gradient based orthogonal and nonorthogonal matrix joint diagonalization algorithms. Our approach is to use the geometry of matrix Lie groups to develop continuous-time flows for joint diagonalization and derive their discretized versions. We employ the developed methods to construct a class of Independent Component Analysis (ICA) algorithms based on non-orthogonal joint dia...

متن کامل

Sensitivity Analysis for the Problem of Matrix Joint Diagonalization

We investigate the sensitivity of the problem of Non-Orthogonal (matrix) Joint Diagonalization (NOJD). First, we consider the uniqueness conditions for the problem of Exact Joint Diagonalization (EJD), which is closely related to the issue of uniqueness in tensor decompositions. As a by-product, we derive the well-known identifiability conditions for Independent Component Analysis (ICA), based ...

متن کامل

Soft Dimension Reduction for ICA by Joint Diagonalization on the Stiefel Manifold

Joint diagonalization for ICA is often performed on the orthogonal group after a pre-whitening step. Here we assume that we only want to extract a few sources after pre-whitening, and hence work on the Stiefel manifold of p-frames in R. The resulting method does not only use second-order statistics to estimate the dimension reduction and is therefore denoted as soft dimension reduction. We empl...

متن کامل

A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation

A new efficient algorithm is presented for joint diagonalization of several matrices. The algorithm is based on the Frobenius-norm formulation of the joint diagonalization problem, and addresses diagonalization with a general, non-orthogonal transformation. The iterative scheme of the algorithm is based on a multiplicative update which ensures the invertibility of the diagonalizer. The algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005